THIS SLIDE IS INTENTIONALLY LEFT BLANK.

Section 11.2

Region of Convergence (ROC(

Version: 2016-01-25

æ.

 $\mathcal{O}\mathcal{A}\mathcal{O}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

< □ ▶

• A disc with center 0 and radius *r* is the set of all complex numbers *z* satisfying

|Z| < r

where r is a real constant and r > .0

∢ ≣ ▶

æ.

590

• An annulus with center 0, inner radius r_0 , and outer radius r_1 is the set of all complex numbers Zsatisfying

 $r_0 < |z| < r_{1}$

where r_0 and r_1 are real constants and $0 < r_0 < r_{.1}$

Ð,

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

∃►

• The exterior of a circle with center 0 and radius *r* is the set of all complex numbers *z*satisfying

|Z| > r

where r is a real constant and r > .0

Version: 2016-01-25

▶ ▲ 문 ▶ – 문

590

- The ROC consists of *concentric circles centered at the origin* in the complex plane.
- If the sequence X has a rational z transform, then the ROC does not contain any poles, and the ROC is bounded by poles or extends to infinity.
- If the sequence X is *finite duration*, then the ROC is the *entire complex plane*, except possibly the origin (and/or infinity.(
- If the sequence X is *right sided* and the circle $|z| = r_0$ is in the ROC, then all (finite) values of Z for which $|z| > r_0$ will also be in the ROC (i.e., the ROC contains all points *outside the circle*.
- Solution If the sequence x is *left sided* and the circle $|z| = r_0$ is in the ROC, then all values of z for which $0 < |z| < r_0$ will also be in the ROC (i.e., the ROC contains all points *inside the circle*, except possibly the origin.(
- If the sequence X is *two sided* and the circle $|Z| = r_0$ is in the ROC, then the ROC will consist of a ring that includes this circle (i.e., the ROC is an *annulus* centered at the origin containing the circle.(

SAR

- If the z transform X of x is *rational* and x is *right sided*, then the ROC is the region outside the outermost pole (i.e., outside the circle of radius equal to the largest magnitude of the poles of X). (If x is causal, then the ROC also includes infinity.)
- If the z transform X of x is rational and x is left sided, then the ROC is the region inside the innermost nonzero pole (i.e., inside the circle of radius equal to the smallest magnitude of the nonzero poles of X and extending inward to and possibly including the origin). If x is anticausal, then the ROC also includes the origin.
- Some of the preceding properties are redundant (e.g., properties 1, 2, and 4 imply property 7).
- The ROC must always be of the form of one of the following:
 - a disc centered at the origin, possibly excluding the origin
 - an annulus centered at the origin
 - be exterior of a circle centered at the origin (possibly excluding infinity)
 - the entire complex plane, possibly excluding the origin (and/or infinity)

E.

 $\mathcal{A} \subset \mathcal{A}$

Section 11.3

Properties of the Z Transform

Version: 2016-01-25

₹.

 $\mathcal{O}\mathcal{Q}$

Property	Time Domain	Z Domain	ROC
Linearity	$a_1 x_1(n) + a_2 x_2(n($	$a_1 X_1(z) + a_2 X_2(z(z))$	At least $R_1 \cap R_2$
Translation	x(n-n(0))	$Z^{-n_0}X(Z($	${\cal R}$ except possible addition/deletion of 0
Z-Domain Scaling	a ⁿ x(n(X(<i>a</i> ⁻¹ <i>z</i> (<i>a</i> <i>R</i>
	$e^{j\Omega_0 n} X(n($	$X(e^{-j\Omega_0}Z($	R
Time Reversal	x(-n)	X(1/ <i>ż</i>)	<i>R</i> ⁻¹
Upsampling	(↑ <i>M</i>) <i>x</i> (<i>n</i>)	$X(Z^M)$	$R^{1/M}$
Conjugation	X*(1)	X*(<i>z</i> *)	R
Convolution	<i>x</i> ₁ * <i>x</i> ₂ (<i>n</i>)	$X_1(z)X_2(z)$	At least $R_1 \cap R_2$
Z-Domain Diff.	<i>nx</i> (<i>n</i>)	$-Z\frac{d}{dz}X(z)$	R
Differencing	<i>x</i> (<i>n</i>) − <i>x</i> (<i>n</i> −1)	$(1-z^{-1})X(z)$	At least $R \cap z > 0$
Accumulation	$\sum_{k^{\infty}-=}^{n} X(k)$	$\frac{z}{z-1}X(z)$	At least $R \cap z > 1$

Property	
Initial Value Theorem	$X(0) = \lim_{z \to \infty} X(z)$
Final Value Theorem	$\lim_{n \to \infty} x(n) = \lim_{z \to 1} [(z-1)X(\underline{z}($

▲□▶▲□▶▲目▶▲目▶ 目 めへぐ

Pair	x(n(X(Ź	ROC
1	δ(//	1	All Z
2	<i>u</i> (<i>n</i> ($\frac{z}{z-1}$	<i>z</i> > 1
3	<i>−u</i> (<i>−n−</i> (1	$\frac{z}{z-1}$	<i>z</i> < 1
4	nu(n($\frac{Z}{Z-1)^2}$	<i>z</i> > 1
5	<i>nu</i> (<i>n</i> (1	$\frac{z}{(z-1)^2}$	<i>z</i> < 1
6	a ⁿ u(n($\frac{z}{z-a}$	z > a
7	<i>−aⁿu</i> (<i>−n−</i> (1	<u></u> <u>z</u> a	z < a
8	na ⁿ u(n($\frac{az}{(z-a)^2}$	z > a
9	<i>–naⁿu</i> (<i>–n–</i> (1	$\frac{az}{(z-a)^2}$	z < a
10)cosΩ ₀ n) u(n($\frac{\underline{z}(z-\cos\Omega_0)}{\underline{z}-2\underline{z}\cos\Omega_0+1}$	<i>z</i> > 1
11)sinΩ₀ <i>n</i>) <i>u</i> (<i>n</i> ($\frac{z \sin \Omega_0}{z^2 - 2z \cos \Omega_0 + 1}$	<i>z</i> > 1
12) <i>a</i> ⁿ cosΩ ₀ <i>n</i>) <i>u</i> (<i>n</i> ($\frac{z(z-a\cos\Omega(_0)}{z^2-2az\cos\Omega_0+a^2}$	z > a
13) <i>a</i> ²sinΩ₀ <i>n</i>)u(<i>n</i> ($\frac{az \sin \Omega_0}{\hat{z} - 2az \cos \Omega_0 + \hat{z}}$	z > a

-

• If $x_1(n) \xleftarrow{Z^T} X_1(z)$ with ROC R_1 and $x_2(n) \xleftarrow{Z^T} X_2(z)$ with ROC R_2 , then $a_1 x_1(n) + a_2 x_2(n) \xleftarrow{Z^T} a_1 X_1(z) + a_2 X_2(z)$ with ROC R containing $R_1 \cap R_2$

where a_1 and a_2 are arbitrary complex constants.

- This is known as the linearity property of the z transform.
- The ROC always contains the intersection but could be larger (in the case that pole-zero cancellation occurs.(

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 - のへぐ

• If $X(n) \leftarrow^{TT} X(z)$ with ROC R, then

•where n_0 is an integer constant and R^{i} is the same as R except for the possible addition or deletion of zero or infinity.

•This is known as the translation (or time-shifting) property of the z transform.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• If $X(n) \leftarrow X(z)$ with ROC R, then

$a^n x(n) \xleftarrow{} X(a) \xrightarrow{} X(a)$ with ROC |a| R,

where *a* is a nonzero constant.

- This is known as the z-domain scaling property of the z transform.
- As illustrated below, the ROC R is *scaled* by |a|.

Version: 2016-01-25

• If $X(n) \leftarrow^{\mathbb{Z}T} X(z)$ with ROC R, then

$x(-n) \leftarrow \stackrel{\text{\tiny ZT}}{\rightarrow} X(1/z)$ with ROC 1/*R*.

- This is known as the time-reversal property of the z transform.
- As illustrated below, the ROC *R* is *reciprocated*.

Version: 2016-01-25

• Define $(\uparrow M) x(n)$ as

$$(\uparrow M) x(n) = \frac{x(n'M)}{0}$$
 if $n'M$ is an integer otherwise.

• If $X(n) \leftarrow X(z)$ with ROC R, then

 $\uparrow) M) X(n) \xleftarrow{}^{\text{T}} X(z^{M}(\text{ with ROC } R^{1/M}.$

• This is known as the upsampling (or time-expansion) property of the z transform.

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > の < (?)</p>